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Abstract. We present supplementary information on the recent indirect measurement of the Casimir pres-
sure between two parallel plates using a micromachined oscillator. The equivalent pressure between the
plates is obtained by means of the proximity force approximation after measuring the force gradient between
a gold coated sphere and a gold coated plate. The data are compared with a new theoretical approach to
the thermal Casimir force based on the use of the Lifshitz formula, combined with a generalized plasma-
like dielectric permittivity that takes into account interband transitions of core electrons. The theoretical
Casimir pressures calculated using the new approach are compared with those computed in the framework
of the previously used impedance approach and also with the Drude model approach. The latter is shown
to be excluded by the data at a 99.9% confidence level within the wide separation range from 210 to 620 nm.
The level of agreement between the data and theoretical approaches based on the generalized plasma model,
or the Leontovich surface impedance, is used to set stronger constraints on the Yukawa forces predicted from
the exchange of light elementary particles and/or extra-dimensional physics. The resulting constraints are
the strongest in the interaction region from 20 to 86 nm with a largest improvement by a factor of 4.4 at
26 nm.

1 Introduction

It is well known that there is little or no experimental con-
firmation for many predictions of unified field theories, su-
persymmetry, supergravity, or string theory. Direct experi-
mental tests for many of these predictions require acceler-
ators of very high energies, which will be not available in
the foreseeable future. For this reason any non-accelerator
tests of the predictions of new physics beyond the standard
model attract the serious attention of both experimental-
ists and theorists.
One of the most intriguing predictions made by many

extensions of the standard model is the existence of light
and massless elementary particles, which arise as a re-
sult of some spontaneously (or weakly dynamically) broken
symmetry. Beams of such particles can penetrate through
thick matter with practically no interaction. This makes
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it difficult to investigate these particles using the usual
laboratory setups of elementary particle physics. There is,
however, an alternative way to investigate light elementary
particles and their interactions by using table-top labora-
tory experiments. These experiments utilize the fact that
the exchange of such particles between atoms belonging to
two different macrobodies can generate a new long-range
force in addition to the commonly known electromagnetic
and gravitational interactions. For example, the exchange
of predicted light bosons, such as scalar axions, gravipho-
tons, hyperphotons, dilatons and moduli among others
(see, e.g. [1–5]) generates a Yukawa potential. The sim-
ultaneous exchange of two photons, two massless scalars
or massless pseudoscalars, and the exchange of a mass-
less axion or a massless neutrino–antineutrino pair leads
to power-law interactions with different powers [6–11]. Co-
incidently, a Yukawa correction to Newtonian gravity is
predicted in extra-dimensional physics with compact ex-
tra dimensions and a low-energy compactification scale of
order of 1 TeV [12–16]. Furthermore, some brane theories
contain exactly the standard model at low energy [17].
For models of non-compact but warped extra dimensions,
power-law corrections to the Newtonian gravitational law
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have been predicted [18, 19]. The cosmological constant
generated in such models may be of the correct order of
magnitude as suggested by observations [20]. Direct ex-
perimental signatures of strings and branes are discussed
in [21].
Experimental constraints on hypothetical long-range

interactions arising from both light elementary particles
and large extra dimensions can be obtained from precise
force measurements between macrobodies. For electrically
neutral test bodies the dominant background force at sep-
arations greater than 10−5m is the gravity. At shorter sep-
arations the dominant forces are the van der Waals and
Casimir forces, caused by fluctuations of the electromag-
netic field [22]. During the past few years a number of
new experiments have been performed to measure small
forces between macrobodies obtaining stronger constraints
on hypothetical long-range interactions (which are also re-
ferred to as the “fifth force” [1]). Thus, in submillimeter
gravity experiments stronger constraints on Yukawa cor-
rections to the Newtonian gravitational force for ranges
∼ 10−4m and ∼ 10−5m have been obtained [23–28]. In
a series of experiments measuring the Casimir force be-
tween gold coated test bodies the constraints on Yukawa-
type interactions in the submicrometer range have been
strengthened up to 104 times [29–44].
This paper exploits the results of the most precise re-

cent determination of the Casimir pressure between two
parallel gold coated plates using a micromechanical tor-
sional oscillator. This is the third in a series of experiments
using amicromechanical oscillator for precise Casimir force
measurements. Results of the first two experiments were
published in [43, 44] (previously a similar technique was
used to demonstrate the actuation of a micromechanical
device by the Casimir force [45, 46]). A brief discussion of
the results of the third experiment, and a description of the
main improvements, as compared with the previous two
experiments, is contained in [47]. Here we present addi-
tional experimental details related to the experiment [47]
that were not discussed in the first publication, including
the resistivity measurements and tests of the linearity of
the oscillator used. The focus of this paper is a comparison
of the experimental data with a recently proposed new the-
oretical approach to the thermal Casimir force [48], which
is applicable to all experiments regardless of the separation
between the interacting bodies. Within this framework, we
first present a precise fit of the tabulated optical data [49]
for the imaginary part of the dielectric permittivity of gold
within a wide frequency region. The fit is obtained using
a set of six oscillators representing interband transitions
in gold. We then compare this fit with a previously known
fit based on DESY data [50, 51]. Our theoretical approach
based on the Lifshitz formula is found to be in very good
agreement with the measured results. The same measured
results are also compared with an alternative approach to
the theory of the thermal Casimir force [52], which ap-
proach is found to be excluded by our measurements at
a confidence level of 99.9%. The level of agreement between
our theory and the experimental data is used to set con-
straints on Yukawa-type corrections to Newtonian gravity
originating from the exchange of light hypothetical ele-

mentary particles and/or extra-dimensional physics. The
resulting constraints are several times stronger than those
derived from previous experiments. We also reanalyze con-
straints following [42] from experiment [34, 35] (in [42] the
confidence level of our results was not determined). As
a consequence, the interaction region where the constraints
from the present experiment are the strongest is widened.
Special attention is paid to minor deviations between ex-
periment and theory at the shortest separations. Although
these deviations are inside the error bars and thus are not
statistically meaningful, we present an analysis of various
explanations for them.
The plan of this paper is as follows: in Sect. 2 we

present a brief description of the experimental setup and
measurement results with an emphasis on novel aspects
not described previously in [43, 44, 47]. Section 3 is de-
voted to the comparison of experimental data with dif-
ferent theoretical approaches including our new approach
in [48]. The new precise oscillator fit of the optical data
for gold is also presented here. Section 4 contains con-
straints on hypothetical Yukawa interactions following
from the level of agreement of data with theory, and it in-
cludes a comparison with constraints obtained from earlier
experiments. In Sect. 5 we present a discussion and our
conclusions.

2 Experimental setup
and measurement results

One component of our setup is an Au-coated sapphire
sphere attached to an optical fiber. The thickness of
the Au coating on the sphere is ∆

(s)
g = 180 nm, and

the radius of the coated sphere is R = 151.3± 0.2µm.
The sphere is placed at a separation z above a micro-
machined oscillator consisting of a heavily doped, Au-
coated polysilicon plate (the thickness of the coating is

∆
(p)
g = 210 nm) suspended at two opposite points by ser-
pentine springs. This plate can rotate under the influ-
ence of the Casimir force F (z) acting between the sphere
and the plate. The rotation angle is measured by the
change of the capacitance between the plate and two
independently contacted polysilicon electrodes located
under it (details of the setup are described in [43, 44]).
The micromachined oscillator and the sphere with a fiber
were mounted inside a can with magnetic damping vi-
bration isolation, where a pressure below 10−4 Torr was
maintained.
In this experiment a dynamic measurement mode was

employed. For this purpose the vertical separation between
the sphere and the plate was varied harmonically, z̃(t) =
z+Az cos(ωrt), where ωr is the resonant angular frequency
of the oscillator in the presence of the sphere. The magni-
tude of the amplitude Az ≈ 2 nm was chosen in such a way
that the oscillator exhibited a linear response. In the pres-
ence of the Casimir force F (z) the resonant frequency ωr
is shifted relative to the natural angular frequency of the
oscillator ω0 = 2π× (713.25± 0.02)Hz determined in the
absence of the sphere. In the linear regime this shift can be
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found using [43–47]

ω2r = ω
2
0

[
1−

b2

Iω20

∂F (z)

∂z

]
, (1)

where b is the lever arm between the axis of plate rota-
tion and the projection on the plate of the closest point of
the sphere, I is the moment of inertia of the oscillator, and
b2/I = (1.2432±0.0005)µg−1.
The actual measured quantity in this experiment is the

change of the resonant frequency of the oscillator, ωr−ω0,
under the influence of the Casimir force F (z) acting be-
tween the sphere and the plate. Using (1), the experimental
data for ωr−ω0 obtained at different separation distances
can be transformed into ∂F (z)/∂z. It is less useful, how-
ever, to recover the force F (z) between a sphere and a plate
using the force gradient. A better avenue is given by using
the proximity force approximation (PFA) [53–55]

F (z) = 2πRE(z) , (2)

where E(z) is the Casimir energy per unit area between
two infinitely large parallel plates composed of the same
materials as the sphere and the plate. Differentiating with
respect to z and taking into account that the Casimir pres-
sure between the two parallel plates is

P (z) =−
∂E(z)

∂z
, (3)

one arrives at the expression

P (z) =−
1

2πR

∂F (z)

∂z
. (4)

From (1) and (4) one can immediately convert the experi-
mental data into data for the Casimir pressure between
two parallel plates. This is in fact the so-called indirect
measurement [56] of the pressure. Note that in [57], where
the configuration of two parallel plates was actually used
in the experimental setup, the directly measured quantity
was also the frequency shift due to the Casimir pressure
proportional to ∂P (z)/∂z. The pressure P (z) was then re-
covered using the data for its derivative.
The calibration of absolute separations between the

plate and the sphere was performed by the application of
voltages in a manner analogous to that reported in [43, 44].
The use of a two-color fiber interferometer [58] and a ≈ 7%
improvement in vibration noise yielded an error of only
0.2 nm in a distance zmeas between the end of the fiber and
the stationary reference. As a result, for every repetition of
the Casimir pressure measurement we were able to repo-
sition our sample to within ∆zmeas = 0.2 nm. Finally the
absolute separations z between the sphere and the plate
were measured with an absolute error ∆z = 0.6 nm deter-
mined at 95% confidence [44].
The indirect measurements of the Casimir pressure

Pj(zi) were repeated at practically the same separations zi
(1≤ i≤ 293) 33 times (1≤ j ≤ 33). The mean values of the
experimental Casimir pressure

P̄ (zi) =
1

33

33∑
j=1

Pj(zi) (5)

are plotted in Fig. 1 as a function of separation over the
entire measurement range from z1 = 162.03 nm to z293 =
745.98 nm. As an example, a few mean Casimir pressures
P̄ (zi) at different separations are presented in column a
of Table 1. In this measurement the random experimental
error is much smaller than the systematic error. Specif-
ically, using Student’s t-distribution [59] with a number
of degrees of freedom f = 32, and choosing β = 0.95 con-
fidence, we obtain p = (1+β)/2 = 0.975, and tp(f) = 2.0.
This leads to the random experimental error

∆randP exp(zi) = s(zi)tp(f) , (6)

where s(z) is the variance of the mean for the pressure

s2(zi) =
1

1056

33∑
j=1

[
Pj(zi)− P̄ (zi)

]2
. (7)

The random error in (6) reaches a maximum value equal
to 0.46mPa at z = 162 nm, decreases to 0.11mPa at z =
300 nm, and maintains this value up to z = 746 nm.
The systematic error of the pressure measurements in

this experiment is determined by the errors in the meas-
urements of the resonance frequency, radius of the sphere
(these errors were indicated above), and also by the error
in using the PFA. Until 2006 the latter was not known
with certainty but estimated to be of order z/R on the
basis of dimensional considerations [55]. Recently, how-
ever, quantitative results on the accuracy of PFA were
obtained theoretically for the configuration of a cylinder
above a plate [60, 61] (the electromagnetic Casimir effect),
and for a sphere above a plate [62–64] (the scalar Casimir
effect). In addition the validity of the PFA was estab-
lished experimentally [65] for a sphere above a plate. In
all cases at small separations the error in using the PFA
was shown to be less than z/R. However, in our conser-
vative error analysis we estimate this error with a safety
margin as z/R. By combining all the above systematic er-
rors at 95% confidence using the statistical rules described
in [44], we obtain a systematic error equal to 2.12mPa at
z = 162 nm. The systematic error decreases to 0.44mPa at
z = 300 nm, and then to 0.31mPa at z = 746 nm. Finally
we combine the resulting random and systematic errors at
a 95% confidence to arrive at the total experimental error,

Fig. 1. Values of the mean Casimir pressure between two Au-
coated plates as a function of separation
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Table 1. Magnitudes of the mean experimental Casimir pres-
sures P̄ (column a) at different separations z compared with
the magnitudes of the theoretical pressures P th computed
using the generalized plasma model approach (column b), the
Leontovich surface impedance approach (column c), the Drude
model approach (column d), and with the half-width, Ξ, of the
95% confidence interval for P th-P̄ (column e). All pressures are
given in mPa

z (nm) a b c d e

162 1108.4 1098.4 1094.2 1076.2 21.2
166 1012.7 1007.1 1002.7 985.40 19.0
170 926.85 923.71 919.56 902.96 17.1
180 751.19 750.58 747.06 732.14 13.3
190 616.00 616.71 613.70 600.28 10.5
200 510.50 511.26 508.70 496.62 8.40
250 225.16 225.71 224.45 217.11 3.30
300 114.82 114.87 114.18 109.48 1.63
350 64.634 64.574 64.176 61.004 0.98
400 39.198 39.096 38.850 36.617 0.69
450 25.155 25.034 24.874 23.247 0.54
500 16.822 16.785 16.678 15.456 0.47
550 11.678 11.669 11.595 10.654 0.42
600 8.410 8.365 8.312 7.573 0.39
650 6.216 6.151 6.113 5.522 0.38
700 4.730 4.626 4.598 4.118 0.36
746 3.614 3.620 5.598 3.198 0.35

∆totP exp(z), approximately equal to the systematic error
at all separations considered. Detailed information on the
statistical methods used in our error analysis can be found
in [44, 56]. As a result, the total relative experimental error
∆P exp(z)/|P̄ (z)| varies from 0.19% at z = 162 nm, to 0.9%
at z = 400 nm, and to 9.0% at z = 746 nm. Hence this is the
most precise experiment on the Casimir effect performed
up to date.
Several additional measurements and tests were per-

formed in order to compare the experimental data with
theory in a conclusive manner. In order to include the ef-
fects of surface roughness in theoretical computations of
the Casimir pressure we have investigated the topography
of the metallic coatings, both on the plate (p) and on the
sphere (s), using an AFM probe in tapping mode. All AFM
scans were squares with sizes ranging from 0.5×0.5µm to
10×10 µm. The information obtained was indistinguish-
able. In the case of a sphere the surface curvature was taken
into account. For this purpose the image was planarized,
and then the roughness analysis was performed. For a typ-
ical scan of 5×5 µm the effect of curvature is about 40 nm.
From AFM images of the surfaces, the fraction of each sur-
face area v

(p,s)
i with height h

(p,s)
i was determined. It was

found that for the sphere (1 ≤ i≤K(s) = 106) h(s)i varies
from 0 to 10.94 nm, and for the plate (1≤ i ≤K(p) = 85)
h
(p)
i varies from 0 to 18.35 nm. Here, the highest peaks
on the sphere and on the plate are almost of the same
height as in the previous experiment of [44] (11.06 nm and
20.65 nm on the sphere and plate, respectively [44]). How-
ever, they are much lower than the highest peaks in the

experiment [43]. The respective zero roughness levels on

the sphere and on the plate,H
(s)
0 andH

(p)
0 , are found from

K(p,s)∑
i=1

[
H
(p,s)
0 −h(p,s)i

]
v
(p,s)
i = 0 . (8)

From (8) using the roughness data one obtains H
(s)
0 =

5.01 nm and H
(p)
0 = 9.66 nm. Note that precise measure-

ments of absolute separations z discussed above result in
separations just between the zero roughness levels deter-
mined in (8).
Special tests were performed to investigate possible

nonlinear behavior of the oscillator under the influence of
the Casimir force. First, the resonance frequency ωr ob-
served under the excitation leading to a harmonically vary-
ing separation with amplitude Az was compared with the
resonance frequency with no excitation (i.e., with sepa-
ration varied just through the thermal noise). When the
amplitude Az was less than 4 nm, no deviation was ob-
served between the measured resonance frequency and the
thermal resonance frequency within the ≈ 5mHz noise.
This was performed at different separations (recall that
the amplitude actually used in the experiment was Az ≈
2 nm). The value of Acrz at which deviations are observed
is a function of separation. For example, at z = 199.8 nm
Acrz = 4.5 nm, at z = 247.3 nm A

cr
z = 10.0 nm, and at z =

302.4 nm, Acrz = 15.0 nm. In all cases, when observed, non-
linearities decrease the resonance frequency.
Another test performed was a check for the strength

of the signal at different harmonics of the excitation. The
experiment was done with the excitation z̃(t) at the res-
onant frequency ωr. The checks were performed with the
excitations at frequencies 2ωr and ωr/2, but no change in
the response at ωr was observed for Ar < 4 nm. For larger
amplitudes the results were consistent with what was ob-
served in the first test. These tests all verify that the os-
cillator was in fact operating in a linear regime for our
measurements.
It is significant that the comparison of experimental

data with theory of the Casimir force requires knowledge of
the optical and electronic parameters of the Au layers. In
previous experiments all of these parameters, including the
plasma frequency ωp and relaxation parameter γ(T ), were
taken from tables [49]. For a more conclusive comparison of
this experiment with different theoretical approaches, we
measured the resistivity ρ of the Au films as a function of
temperature in the region from T1 = 3K to 400K. These
measurements were performed using a four probe approach
on Au films of the same thickness, which were deposited at
the same time as the Au deposition on the oscillator, and
on the same substrates. The samples were approximately
1mm long and 10 µm wide. The resistivity of each sam-
ple was found by taking into account its geometrical factor
with an error of about 2% arising from the errors in meas-
uring of the sample’s geometry. The experimental data for
the resistivity versus temperature are presented in Fig. 2.
These data at T � TD/4 (where TD = 165K is the Debye



R.S. Decca et al.: Novel constraints on extra-dimensional physics from the Casimir effect 967

Fig. 2. Resistivity of the Au films (measured with an error of
about 2%) as a function of temperature

temperature for Au) were fitted to a straight line [66]:

ρ(T ) =
4π

ω2pτ(T )
=
4πvF
ω2pl(T )

=
CT

ω
3/2
p

. (9)

Here τ(T ) = l(T )/vF is the relaxation time, l(T )∼ T is the
mean free path of an electron, vF ∼ ω

1/2
p is the Fermi vel-

ocity, and C = const. The fit results in C/ω
3/2
p = (8.14±

0.16) nΩ cmK−1. On the other hand, using the resistiv-
ity data for pure Au as a function of temperature [67]
and the previously used value of the plasma frequency
ω̃p = 9.0 eV [49, 68] we obtain C/ω̃

3/2
p = 8.00. As a re-

sult we find for the Au film used in our experiment ωp =
(8.9±0.1) eV. Here, the absolute error of 0.1 eV arises from
the errors of the resistivity measurements. Some of the
theoretical approaches to the thermal Casimir force re-
quire knowledge of the relaxation parameter. The smooth
Drude extrapolation of the imaginary part of the Au dielec-
tric permittivity, given by the tabulated optical data [49],
yields the relaxation parameter at room temperature γ =
0.0357 eV (which compares with γ̃ = 0.035 eV used in pre-
vious work [43, 44, 68]).

3 Comparison of experimental data
with different theoretical approaches
to the thermal Casimir force

The theoretical description of both the van der Waals and
Casimir pressures between planar plates at temperature T
in thermal equilibrium is given by the Lifshitz formula [69]

P (z) =−
kBT

π

∞∑
l=0

(
1−
1

2
δl0

)∫ ∞
0

k⊥ dk⊥ql

×
{[
r−2TM(ξl, k⊥)e

2qlz−1
]−1

+
[
r−2TE(ξl, k⊥)e

2qlz−1
]−1}

. (10)

Here k⊥ = |k⊥| is the magnitude of the wave vector com-
ponent in the plane of the plates, q2l = k

2
⊥+ ξ

2
l /c

2, ξl =
2πkBT l/h̄ are the Matsubara frequencies, l = 0, 1, 2, . . . ,

δlm is Kronecker’s delta symbol, and kB is the Boltzmann
constant. The reflection coefficients for two independent
polarizations of the electromagnetic field (the transverse
magnetic and transverse electric) are defined as

rTM(ξl, k⊥) =
εlql−kl
εlql+kl

, rTE(ξl, k⊥) =
kl− ql
kl+ ql

, (11)

where

kl =

√
εl
ξ2l
c2
+k2⊥ , εl = ε(iξl) , (12)

and ε(ω) is the frequency-dependent dielectric permittivity
of the plates.
Note that (10) is the expression for a plate of infinite

thickness. Using the Lifshitz formula for layered struc-
tures [55], it is easy to see that for Au layer thicknesses
larger than 150 nm (as in our case) at, e.g., z = 400 nm the
error due to the replacement of a layer with a semispace is
less than 0.003%.
It is known that there is some controversy concerning

the application of (10) and (11) to real metals. These con-
troversies arise from different approaches to the calculation
of the zero-frequency (l = 0) term in (10). For real mate-
rials (Au for instance) ε(iξl) is usually found through the
Kramers–Kronig relation

ε(iξl) = 1+
1

π
P

∫ ∞
−∞

ωε′′(ω)

ω2+ ξ2l
dω , (13)

where ε′′(ω) is the imaginary part of the dielectric permit-
tivity and the integral is taken as a principal value. Optical
data for ε′′(ω) are available within some restricted fre-
quency region [49], and it is common to smoothly extrapo-
late available data to lower frequencies using the imaginary
part of the Drude model dielectric permittivity

ε′′(ω) =
ω2pγ

ω(ω2+γ2)
. (14)

If such an extrapolation is performed down to lower fre-
quencies, including zero frequency [52], the use of the re-
sulting ε(iξl) in the Lifshitz theory leads to a violation of
the Nernst heat theorem for perfect crystal lattices [70],
and the Casimir pressures calculated using (10) are in con-
tradiction with experiment [43, 44, 47]. Because of this, two
other approaches to the determination of ε(iξl) were pro-
posed in the literature. According to the plasma model
approach [71–73], the tabulated optical data are not used
and ε(iξl) is found from the free electron plasma model

ε(iξl) = 1+
ω2p

ξ2l
. (15)

According to the impedance approach [74, 75], the reflec-
tion coefficients (11) are expressed in terms of the Leon-
tovich surface impedance Z(ω) instead of the dielectric
permittivity. The contributions of all Matsubara frequen-
cies with l≥ 1 are obtained from tabulated optical data ex-
trapolated by the Drude model using the relation Z(iξl) =
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1/
√
ε(iξl). This leads to approximately the same results

of the calculation as the use of the dielectric permittivity.
As to the contribution of zero Matsubara frequency, it is
obtained using the impedance of infrared optics, and it is
different from that obtained using the Drude model (a dis-
cussion of different approaches can be found in [76, 77]).
Note that the impedance approach was used for the first
comparison of the measurement data of this experiment
with theory [47].
Although the plasma model and impedance approaches

are in agreement with thermodynamics, neither can be
considered as universally valid. The plasma model ap-
proach completely neglects dissipation. Because of this,
it is in agreement with measured data only for experi-
ments [43, 44, 47] performed at separations larger than the
plasma wavelength λp. As for the impedance approach, it
is not applicable to short-separation experiments [34, 35]
because when z < λp the Leontovich impedance boundary
conditions become invalid due to the violation of the in-
equality |Z(ω)| � 1.
Recently [48] a new approach to the thermal Casimir

force between real metals was proposed that is equally ap-
plicable at both small and large separations. This approach
is based on the use of the generalized plasma-like dielectric
permittivity

ε(ω) = 1−
ω2p
ω2
+
K∑
j=1

fj

ω2j −ω
2− igjω

, (16)

which takes into account the interband transitions of core
electrons. Here ωj �= 0 are the resonant frequencies of the
core electrons, gj are the respective relaxation frequencies,
fj are the oscillator strengths, andK is the number of oscil-
lators. Note that the term −ω2p/ω

2 on the right-hand side
of (16) describes free electrons and leads to a purely imag-
inary current. This contribution to ε(ω) is entirely real
and does not include dissipation. Importantly, the oscilla-
tor term on the right-hand side of (16) does not include
the oscillator with zero resonant frequency ω0 = 0, which is
equivalent to the Drude dielectric function, i.e., it does not
describe conduction electrons but only core electrons. This
term incorporates dissipation due to interband transitions.
In [48] the Lifshitz theory together with the dielec-

tric permittivity (16) was used to calculate the thermal
Casimir force in a short-separation experiment [34, 35],
and the experimental results were found to be in good
agreement with theory. For this purpose the oscillator pa-
rameters of Au in (16) were taken from [50, 51], where they
were found using the 3-oscillator model fitted to old DESY
data. Below we compare the 3-oscillator fit of [50, 51] with
the more complete data set of [49] and perform a more ex-
act 6-oscillator fit. The resulting oscillator parameters are
used to calculate the Casimir pressure in the most precise
experiment described in the previous section.
The Kramers–Kronig relation (13) was derived [78]

for dielectric permittivities that were regular or that had
a first order pole at zero frequency. For the dielectric per-
mittivity (16), which has a second order pole at ω = 0,
the Kramers–Kronig relation expressing ε(iω) in terms of

ε′′(ω) is the following [48]:

ε(iξl) = 1+
1

π
P

∫ ∞
−∞

ωε′′(ω)

ω2+ ξ2l
dω+

ω2p

ξ2l
. (17)

In the tables of [49] the most complete data are col-
lected for real, n1(ω), and imaginary, n2(ω), parts of the
complex refraction index of Au in the frequency region
from 0.125 eV to 9919 eV (1 eV = 1.519×1015 rad/s). From
these data, the imaginary part of the dielectric permit-
tivity of Au is expressed as 2n1(ω)n2(ω). To obtain the
contribution of core electrons to the dielectric permittivity,
we consider the difference

ε′′Au(ω) = 2n1(ω)n2(ω)−
ω̃2pγ̃

ω(ω2+ γ̃2)
, (18)

where in accordance with (14) the subtracted term ap-
proximately describes the contribution of free conduction
electrons to optical data.
In Fig. 3 the quantity ε′′Au is plotted as a function of

ω within the frequency region from 2.0 eV to 25 eV (solid
line). For ω < 2 eV the dielectric permittivity is determined
by free conduction electrons, and for ω > 2.5 eV there is
already practically no contribution from conduction elec-
trons, and ε′′Au(ω) ≈ 2n1(ω)n2(ω). The upper limit of the
region under consideration is determined by the frequen-
cies contributing to the Casimir pressure (10). Even at the
shortest separation considered, z = 160 nm, the character-
istic frequency is Ωc = c/(2a)≈ 0.62 eV. Bearing in mind
that even for precise computations of the pressure it is
sufficient to take into account the contribution from Mat-
subara frequencies up to 15Ωc, setting the upper limit of
our region equal to 25 eV is more than adequate.

Fig. 3. Tabulated optical data for the imaginary part of the
dielectric permittivity of Au [49] (with the contribution of con-
duction electrons subtracted) are shown by the solid line. The
oscillator fits are shown as long-dashed line [50, 51] (DESY
data, 3 oscillators) and as short-dashed line (6 oscillators)
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The solid line in Fig. 3 was fitted to the imaginary part
of the dielectric permittivity (16):

ε′′(ω) =
K∑
j=1

fjgjω

(ω2j −ω
2)2+ g2j ω

2
(19)

with K = 6 oscillators. The resulting set of oscillator pa-
rameters fj , ωj and gj is presented in Table 2. In Fig. 3 the
imaginary part of permittivity calculated using the ana-
lytic expression (19) is shown by the short-dashed line. In
the same figure the 3-oscillator fit from [50, 51] is shown
as the long-dashed line. As is seen in Fig. 3, the short-
dashed line based on the 6-oscillator fit better reproduces
the actual data than does the long-dashed line using the
3-oscillator fit.
The Casimir pressure PL(z) at all separations of in-

terest was computed using the Lifshitz theory in (10)–
(12) and (16) with ωp = 8.9 eV, as determined for our
films in Sect. 2, and the oscillator parameters from Table 2.
For comparison with the experimental data, the values of
PL(z) were geometrically averaged over all possible sepa-
rations between the rough surfaces weighted with the frac-
tions of the total area occupied by each separation, as dis-
cussed in Sect. 2. This results in the theoretical Casimir
pressures taking surface roughness into account via the
equation

P th(zi) =
K(s)∑
k=1

K(p)∑
j=1

v
(s)
k v

(p)
j

×PL
(
zi+H

(s)
0 +H

(p)
0 −h

(s)
k −h

(p)
j

)
.

(20)

The pressures P th(zi) were computed at each experi-
mental point zi. Note that (20) takes into account the
combined (nonmultiplicative) effect of nonzero tempera-
ture and finite conductivity on the one hand (this is
incorporated in PL(z) computed using the Lifshitz for-
mula), and of surface roughness on the other. The con-
tributions of diffraction-type and correlation effects in
the roughness correction [79, 80], which are not taken into
account in the geometrical averaging (20), were shown
to be negligible [44]. In this experiment the contribu-

Table 2. The oscillator parameters for
Au in (16) and (19) found here from the
6-oscillator fit to the tabulated optical data
in [49]

j ωj (eV) gj (eV) fj (eV
2)

1 3.05 0.75 7.091
2 4.15 1.85 41.46
3 5.4 1.0 2.700
4 8.5 7.0 154.7
5 13.5 6.0 44.55
6 21.5 9.0 309.6

tion of the roughness correction to the Casimir pres-
sure computed using (20) is very small. For example,
at z = 162 nm the roughness correction contributes only
0.52% of the total pressure. At separations z = 170, 200
and 350 nm roughness contributes only 0.48, 0.35 and
0.13% of the Casimir pressure, respectively. The mag-
nitudes of the computed theoretical Casimir pressures
at some experimental separations are listed in column b
of Table 1.
We now discuss the accuracy of our computations. One

of the sources of the theoretical errors is the sample-to-
sample variation of the optical data for the complex index
of refraction. As was shown in [44] (see also [34, 35]), in
our experiments the variation of the optical data leads to
an uncertainty in the magnitude of the Casimir pressure
that is substantially smaller than 0.5%. To be conservative,
we admit an uncertainty as large as 0.5% in the compu-
tations due to the use of tabulated optical data over the
entire measurement range. There are claims in the litera-
ture [81] that the theoretical computations of the Casimir
pressure between gold surfaces are burdened by up to 5%
errors due to the use of different Drude parameters meas-
ured and calculated for different samples. This is, however,
irrelevant to our experiment. The hypothesis that the mag-
nitude of ωp is much smaller than the value we have used
above (i.e., ωp = 6.85 eV or 7.50 eV, as suggested in [81]) is
rejected at high confidence by our experiment, and by all
previously performed measurements of the Casimir force
between Au surfaces.
The other possible source of theoretical errors is con-

nected with the fact that we compute the Casimir pres-
sure at experimental separations that are determined with
an error ∆z = 0.6 nm [82]. Noting that the dominant the-
oretical dependence of the Casimir pressure is z−4, one
finds that the relative error in the pressure is equal to
4∆z/z. This varies from 1.5% at z = 160 nm to 0.32%
at z = 750 nm. The other theoretical errors, e.g., arising
from neglect of patch potentials or spatial nonlocality, were
analyzed in detail in [44] and found to be negligible. By
combining the above two theoretical errors discussed here
and in the previous paragraph at a 95% confidence level
using the statistical procedure applicable to systematic er-
rors described by a uniform distribution [44, 56], we ob-
tain the total theoretical error ∆totP th(z) as a function
of separation. This error assumes a maximum value of
18.7mPa at z = 162 nm, which is almost 9 times larger
than the total experimental error. Note that in a simi-
lar analysis in [44], one additional theoretical error due
to the use of PFA was included. In [44] it was first com-
bined with the theoretical error due to sample-to-sample
variation of the optical data, with the result that the dis-
tribution law of the combined quantity was not uniform. In
this work, however, the error due to the accuracy of PFA
is included with the experimental errors. Because of this,
the total theoretical error is determined by only two con-
tributions. With the increase of separation to z = 300, 400
and 746 nm, the total theoretical error decreases to 1.15,
0.34 and 0.024mPa, respectively. The relative theoretical
error∆P th(z)/|P th(z)| assumes a maximum value of 1.7%
at z = 162 nm. When the separation increases to z = 300,
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400 and 746 nm, the relative theoretical error decreases to
1.0, 0.86 and 0.65%, respectively. This is mainly explained
by the decreased role of uncertainty in determining the
separations.
We can now compare experiment and theory by con-

sidering the differences P th(zi)− P̄(zi) at each experimen-
tal separation zi. The confidence interval for the quan-
tity P th(zi)− P̄ (zi) determined at 95% confidence prob-
ability is given by [−Ξ0.95(zi), Ξ0.95(zi)] where the half-
width of this interval can be found using the composition
rule [44, 56]

Ξ0.95(zi) = min

{
∆totP th(zi)+∆

totP exp(zi) ,

k
(2)
0.95

√
[∆totP th(zi)]

2
+[∆totP exp(zi)]

2

}
.

(21)

Here for two composed quantities k
(2)
0.95 = 1.1. The values

of the half-width of the confidence interval are listed in the
last column of Table 1.
In Fig. 4a the differences P th(zi)− P̄ (zi) at all experi-

mental points are shown as dots. In the same figure the
confidence interval [−Ξ0.95(zi), Ξ0.95(zi)] at each z is situ-
ated between the solid lines. As seen in the figure, all dots
(and not only 95% of them as required by the rules of math-
ematical statistics) are well inside the confidence interval
at all separations considered. This means that the experi-
mental data are consistent with theory based on the gen-
eralized plasma-like dielectric permittivity (16), and that
in our conservative error analysis the errors (especially at
short separations) are overestimated. For comparison pur-
poses in Fig. 4b we plot as dots the differences P̃ th(zi)−
P̄ (zi) where the experimental data are the same as in
Fig. 4a, but with P̃ th(zi) computed as in [47] using the
Leontovich surface impedance approach, with the Drude
parameters ωp = 8.9 eV and γ = 0.0357 eV. In Table 1, col-
umn c, we present the magnitudes of the Casimir pres-
sures P̃ th(zi) computed using the surface impedance ap-
proach at different separations. As is seen in Fig. 4b, the
theoretical approach using the impedance is also consis-
tent with the data. However, while in Fig. 4a there are
practically no deviations between experiment and the-
ory at z > 350 nm, in Fig. 4b the deviations are notice-
able up to z = 450 nm. By comparing columns b and c
in Table 1, we can conclude that the differences between
the two theoretical approaches do not exceed the magni-
tude of the theoretical error. The comparison of columns
b and c with column a shows that at all separations the
approach using the generalized plasma-like model is in
somewhat better agreement with the data than the sur-
face impedance approach. As is seen in Fig. 4a and b,
the largest deviations between both theoretical approaches
and experimental data are at short separations from 162
to 200 nm. Although these deviations are not statistically
meaningful, because they are well inside the confidence in-
terval, in Sect. 5 we will discuss possible reasons leading to
the deviations between experiment and theory at shortest
separations.

A completely different situation occurs when we com-
pare the experimental data with the alternative approach
to the thermal Casimir force [52] using the Drude model
to compute the contribution of the zero-frequency term in
the Lifshitz formula. To perform the comparison, we cal-
culate the theoretical Casimir pressures in the framework
of [52] with the refined values of the Drude parameters
ωp = 8.9 eV and γ = 0.0357 eV (all details of this approach
and of computations can be found in [44]). The magnitudes
of the resulting Casimir pressures P thD at a few different
separations are listed in Table 1, column d. In Fig. 5 we
plot the differences P thD (zi)− P̄ (zi) at all experimental sep-
arations. The confidence interval [−Ξ0.95(zi), Ξ0.95(zi)] at
each zi is the same for all theoretical approaches. Once

Fig. 4. Differences between theoretical Casimir pressures com-
puted using the generalized plasma model approach (a) and the
Leontovich surface impedance approach (b) and mean experi-
mental Casimir pressures (dots) versus separation. Solid lines
indicate the limits of the 95% confidence intervals
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Fig. 5. Differences between theoretical Casimir pressures com-
puted using the Drude model approach and mean experi-
mental Casimir pressures (dots) versus separation. The solid
line indicates the limits of the 95% confidence intervals, while
the dashed line indicates the limits of the 99.9% confidence
intervals

again, the limits of the confidence interval are denoted
by the solid lines (in Fig. 5 only one solid line is shown
because practically all dots are above it). As is seen in
Fig. 5, the Drude model theoretical approach is experimen-
tally excluded at a 95% confidence level within the whole
measurement range from 162 to 746 nm. This conclusion
is confirmed by the calculation data in Table 1. Subtract-
ing the magnitudes of the theoretical Casimir pressures,
|P thD |, in column d from the experimental results, |P̄ |, in
column a, we obtain at all separations larger results than
the half-width of the confidence interval, Ξ0.95(z), given in
column e.
The wide gaps between the solid line and dots in Fig. 5

suggest that the Drude model approach is actually ex-
cluded experimentally at an even higher confidence than
95%. To make this argument quantitative, we calculate
the half-width of a confidence interval at 99.9% confidence
from

Ξ0.999(z)

Ξ0.95(z)
=
t(1+0.999)/2(32)

t(1+0.95)/2(32)
≈ 1.85 , (22)

where tp(f) is the Student coefficient used in Sect. 2.
The limits of the 99.9% confidence intervals obtained in
(22) are shown in Fig. 5 by the dashed line. As is seen
in Fig. 5, the differences P thD − P̄ are found outside of
the 99.9% confidence interval at separations from 210 to
620 nm. This conclusively demonstrates that our experi-
ment is irreconcilable with the Drude model approach
to the thermal Casimir force. At the same time, the ap-
proaches based on the generalized plasma-like dielectric
permittivity, and on the Leontovich surface impedance,
are consistent with experiment. Note that in our experi-
ment the Drude model approach is excluded at separations
below 1 µm. In the proposed experiments [83–85] it is
planned to test the predictions of different theoretical ap-
proaches to the thermal Casimir force at separations of
about several micrometers.

4 Constraints on Yukawa-type hypothetical
interactions and light elementary particles

As was mentioned in the Introduction, at separations be-
tween macroscopic bodies of about 1 µm and less, the
Casimir force is the dominant background force. From the
level of agreement between the experimental data for the
Casimir pressure and Lifshitz theory (with a generalized
plasma-like permittivity in Sect. 3), one can constrain any
additional force that may coexist with the Casimir force.
As noted in Sect. 1, many extensions of the standardmodel
predict a Yukawa correction to the Newtonian potential
energy between two point masses m1 and m2 at a separa-
tion r, given by [10, 15, 16]

V (r) =−
Gm1m2

r

(
1+αe−r/λ

)
. (23)

Here G is the Newtonian gravitational constant, α is a di-
mensionless constant characterizing the strength of the
Yukawa interaction, and λ is its range.
The total force acting between two parallel plates due

to the potential (23) can be obtained by integration of (23)
over the volumes of the plates, and subsequent negative
differentiation with respect to z. In experiments measur-
ing the Casimir force the contribution of the gravitational
force is very small and can be neglected [42, 43]. Thus, in
what follows we consider only the contribution from the
Yukawa term in (23).
To find the Yukawa pressure for our setup we should

take into account the detailed structure of our test bod-
ies. (As was shown in Sect. 3, for the calculation of the
Casimir pressure it is possible to replace the Au coating
films with Au semispaces and we need not consider the
underlying substrate.) In the present experiment a sap-
phire sphere of density ρs = 4.1 g/cm

3 was first coated with
a layer of Cr of density ρc = 7.14 g/cm

3 and thickness∆c =
10 nm, and then with an external layer of gold of thick-
ness ∆

(s)
g = 180 nm and density ρg = 19.28 g/cm

3. The Si
plate of thicknessL= 3.5 µm, and density ρSi = 2.33 g/cm

3

was also first coated with a layer of Cr of ∆c = 10 nm
thickness, and then with a layer of gold of ∆

(p)
g = 210 nm

thickness. Under the conditions z, λ�R, satisfied in this
experiment, the equivalent Yukawa pressure between the
two parallel plates with the same layer structure as the
above sphere and a plate is given by [37–39, 55]

P hyp(z)

=−2πGαλ2e−z/λ (24)

×

[
ρg− (ρg−ρc)e

−∆
(s)
g /λ− (ρc−ρs)e

−(∆
(s)
g +∆c)/λ

]

×

[
ρg− (ρg−ρc)e

−∆
(p)
g /λ− (ρc−ρSi)e

−(∆
(p)
g +∆c)/λ

]
.

We have verified that the surface roughness, as reported in
Sect. 2, cannot significantly affect the magnitude of a hypo-
thetical pressure with an interaction range longer than 10
nm, and hence can be neglected. Because of this, there is
no need to perform geometrical averaging as in (20) when
calculating the Yukawa interaction.
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According to Sect. 3, theories of the thermal Casimir
force using the generalized plasma-like permittivity or the
Leontovich surface impedance are consistent with the ex-
perimental data. As was noted in Sect. 3, in our conserva-
tive analysis the errors (and consequently the width of the
confidence interval 2Ξ(z)) are overestimated. The reason
for this is that we have included the error due to the un-
certainty of experimental separations∆z in the analysis of
the theoretical errors. As a result, the theoretical pressures
acquired an extra error of≈ 4∆z/z, which led to enormous
widening of the confidence interval at short separations
(see Figs. 4 and 5). This approach was useful in select-
ing among different theories of the thermal Casimir force,
and it permitted us to exclude the one based on the use
of the Drude model at practically 100% confidence. How-
ever, as is clearly seen in Fig. 4a and b, the actual width
of the confidence interval is much less than that between
the solid lines (recall that the actual confidence interval de-
termined at 95% confidence should contain about 95% of
the data dots but not all of them). It is easily seen that
if the theoretical error 4∆z/z due to uncertainties in ex-
perimental separations is disregarded, the resulting more

narrow confidence interval
[
−Ξ̃(z), Ξ̃(z)

]
still contains all

dots representing P th(z)− P̄ (z) within the separation re-
gion from 180 to 746 nm. At a separation z = 180 nm,
the half-width is Ξ̃ = 4.80mPa. At the typical separations
z = 200, 250, 300, 350, 400 and 450 nm, Ξ̃ is equal to 3.30,
1.52, 0.84, 0.57, 0.45 and 0.40mPa, respectively. Thus, for
180 nm ≤ z ≤ 746 nm the magnitude of the hypothetical
pressure should satisfy the inequality

|P hyp(z)| ≤ Ξ̃(z) . (25)

Bearing in mind that the half-width of the confidence in-
terval Ξ̃(z) was defined at a 95% confidence, the same
confidence also applies to the constraints following from
the inequality (25).
We have performed a numerical analysis of (24) and

(25) at different separations and determined the resulting
region of (λ, α)-plane where the inequality (25) is satis-
fied, so that the existence of a Yukawa interaction is con-
sistent with the level of agreement achieved between the
data on the measurement of the Casimir force and the
relevant theory. The strongest constraints within the in-
teraction region 10 nm≤ λ≤ 56 nm are obtained from the
comparison of measurements with theory at a separation
z = 180 nm. With the increase of λ, the strongest con-
straints onαwere obtained from the consideration of larger
separations. Thus, constraints in the regions 56 nm≤ λ≤
71 nm, 71 nm≤ λ≤ 89 nm, 89 nm≤ λ≤ 140 nm, 140 nm≤
λ≤ 220 nm and 220 nm≤ λ≤ 500 nm were obtained from
the agreement between Casimir pressure measurements
and theory at the separations z = 200, 250, 300, 350 and
400 nm, respectively.
The resulting constraints on α are plotted in Fig. 6 for

different values of λ (line 1). The region in the (λ, α)-plane
above the line 1 is excluded by the results of the Casimir
pressure measurements compared with theory, and below
line 1 it is allowed. For comparison, constraints from earlier
experiments are also shown in Fig. 6 in a similar manner.

Fig. 6. Constraints on the strength of the Yukawa inter-
action versus interaction range. Line 1 is obtained in this
paper, line 2 was obtained in [42] using the Casimir force
measurement of [34, 35] and adapted in this paper to the ac-
cepted 95% confidence level. Lines 3 and 4 were obtained
in [88] and [44], respectively. Line 5 was obtained in [37] using
the Casimir force measurement [29, 30]. The region of the
(λ,α) plane above each line is excluded and below the line is
allowed

Special attention should be paid to line 2, represent-
ing constraints following from the short-separation experi-
ment [34, 35] on the measurement of the Casimir force be-
tween an Au-coated sphere and a plate using an atomic
force microscope. The constraints on a Yukawa hypothet-
ical interaction following from that experiment were ob-
tained in [42], and later used in [43, 44, 47] for comparison
with constraints following from other experiments. How-
ever, in [42] the level of agreement between experiment and
theory at zero temperature was described in terms of the
root-mean-square deviation, which, as was recognized later
in [44], is not an appropriate quantity in strongly nonlin-
ear situations. In addition, the calculational scheme using
the root-mean-square deviation does not permit us to de-
termine the confidence level of the results.
Here we reanalyze the experimental data of [34, 35]

and compare them with theory using the Lifshitz for-
mula at laboratory temperatures in a sphere–plate con-
figuration, supplemented by the generalized plasma-like
dielectric permittivity (16). The results of this reanal-
ysis are expressed in terms of the confidence interval
[−Θ(z), Θ(z)] determined at 95% confidence for the differ-
ences between theoretical and mean experimental Casimir
forces, F th(z)− F̄ (z). This interval includes, in particular,
the theoretical errors 3∆z/z arising due to uncertainties
of experimental separations in the sphere–plate configu-
ration. This interval cannot be narrowed as we did above
in the case of the present experiment, because the meas-
urement in [34, 35] is inherently noisier. For example, at
z = 61.08 nm the half-width of the confidence interval is
Θ = 31.6 pN, and with an increase of separation up to
100.15 and 200.46 nm it decreases to 9.17 and 7.20 pN, re-
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spectively. The resulting constraints at a 95% confidence
level are determined from

|F hyp(z)| ≤Θ(z) , (26)

where F hyp(z) is the Yukawa hypothetical force acting be-
tween an Au-coated sphere and a plate [42, 43]. These con-
straints are represented by line 2 in Fig. 6. Note that the
constraints given by line 2 are up to order of magnitude
weaker than those in [42], but they benefit from high confi-
dence, and they can be compared with future work on the
subject by using the same rigorous approach to the com-
parison experiment with theory as proposed in [44, 86, 87].
The other lines in Fig. 6 are obtained from the Casimir-

less experiment [88] (line 3), previous measurements of
the Casimir pressure using the micromachined oscilla-
tor [44] (line 4), and in [37] from a torsion pendulum
experiment [29, 30] (line 5). As is seen in Fig. 6, the re-
sulting constraints represented by line 1 are strongest
within the interaction range 20 nm≤ λ ≤ 86 nm with the
largest improvement by a factor 4.4 at 26 nm. Note that
further strengthening of the resulting constraints on α
within a submicrometer interaction range could provide
important information concerning predicted particles such
as scalar axions, graviphotons, hyperphotons, dilatons,
and moduli among others. For such particles the inter-
action constant α could be much larger than unity. The
same holds for theories based on extra-dimensional physics
with a low-energy compactification scale, where, for in-
stance, for models with three extra dimensions the pre-
dicted characteristic size of the extra dimensions is about
5 nm [12–14].
To conclude this section we briefly discuss possible rea-

sons for the observed deviations between experiment and
theory at the shortest separations shown in Fig. 4a and b.
These deviations are well inside the 95% confidence inter-
val determined for P th− P̄ and thus they are not statis-
tically meaningful. Nevertheless if we bear in mind that
the deviations under consideration are several times larger
than the total experimental error, there may be some un-
derlying physics leading to the small discrepancies between
experiment and theory. The most natural assumption is
that there is some undiscovered nonlinearity of the oscilla-
tor that results in an additional systematic error at short
separations. However, as discussed in Sect. 2, special tests
of the oscillator linearity have been performed that did not
reveal a nonlinear behavior for the amplitudes of sphere
oscillations employed in this experiment. Another possible
effect may be connected with some fine properties of the
interacting surfaces determined, e.g., by correlation effects
in surface roughness or by patch potentials. However, as
was analyzed in detail in [44], these effects are negligibly
small. Thus, even assuming enormously large patches due
to monocrystals with grain sizes ranging from ∼ 300 nm
(i.e., larger than the film thickness) and to 25 nm, the cor-
rection to the pressure due to patches at z = 160 nm is only
0.42mPa (to be compared with the deviation between ex-
periment and theory of almost 10mPa, as in Fig. 4a).
We next consider the possibility that the deviation may

be caused by the Yukawa interaction (23) with some ap-

propriate values of α and λ. A simple calculation shows
that the deviations between experiment and theory at
short separations would practically disappear if we allowed
a Yukawa interaction with α= 5.0×1021 and λ= 10.4 nm.
This interaction would correspond to a point in Fig. 6 with
logλ=−7.98 situated slightly below line 1. However, such
a point would lie above the point α = 1.0×1020 with the
same λ on line 2, which implies that the assumed Yukawa
interaction is excluded by the AFM experiment [34, 35].
Bearing in mind that in the above we have reanalyzed the
results of [34, 35] at a 95% confidence level using modern
methods of comparison between experiment and theory,
this is strong evidence against the existence of a single
Yukawa interaction with α = 5.0×1021 and λ= 10.4 nm.
However, this analysis does not necessarily exclude the
possible existence of more than one Yukawa interaction or
other interactions, having a different spatial dependence.
Amore decisive conclusion about the presence of hypothet-
ical interactions can be obtained through a repetition of
the experiment described in Sect. 2 using a Si plate but
with no covering metallic layer. Noting that the density
of Au is 8.3 times larger than the density of Si and that
the Casimir pressure between Au and Si is approximately
1.5 times smaller than between Au and Au, the deviation
caused by the Yukawa interaction should practically disap-
pear if the Au-coated plate is replaced with a Si plate.

5 Conclusions and discussion

In this paper we have presented additional details on the
recent experimental determination of the Casimir pressure
between two parallel plates using a micromachined oscil-
lator. This experiment incorporates several improvements
over all previous measurements. In particular, the meas-
urements over a wide separation range were repeated many
times at practically the same points for each repetition.
This permits us to substantially reduce the random error,
and to make it much smaller than the systematic error
for the first time in Casimir force measurements. Also, the
plasma frequency of the Au films was determined using the
measured temperature dependence of their resistivity.
The resulting experimental data were compared with

a new theoretical approach to the thermal Casimir force
using the Lifshitz theory incorporating a generalized
plasma-like dielectric permittivity that takes into account
the interband transitions. For this purpose a new oscilla-
tor fit of the tabulated optical data for the imaginary part
of the dielectric permittivity of Au was performed that is
more exact than a previously used fit based on DESY data.
The new theoretical approach was also compared with the
previously known approach using the Leontovich surface
impedance, and with the alternative approach using the
Drude model. The Drude model approach was excluded
experimentally at a 99.9% confidence level over a wide sep-
aration range.
One of the main aims of this paper is the applica-

tion of the Casimir effect to obtain stronger constraints
on hypothetical long-range interactions and light elemen-
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tary particles. We have reanalyzed the previously known
constraints from the measurement of the Casimir force
between an Au-coated sphere and a plate using modern
methods of comparison of experiment and theory at high
confidence. We have also used the resulting level of agree-
ment between the measurements of the Casimir pressure
and the new theory to strengthen constraints on the hy-
pothetical Yukawa-type interaction. The new constraints
obtained above are the strongest within the interaction
range from 20 to 86 nm, with the largest improvement by
a factor 4.4. These results are relevant for the verification
of different theoretical predictions made on the basis of
unified field theories beyond the standard model and of
extra-dimensional physics. We have also discussed some
possible reasons for small deviations between experiment
and theory at the shortest separations considered. It was
shown that although these systematic deviations are not
statistically significant, the fact that we have no explana-
tion for them at present suggests that further experimental
and theoretical work is required to elucidate their nature.
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